Advances in Mechanical Engineering (Aug 2021)

Rotating flow of viscous nanomaterial with radiation and entropy generation

  • Tasawar Hayat,
  • Muhammad Waqar Ahmad,
  • Sohail A Khan,
  • Ahmed Alsaedi

DOI
https://doi.org/10.1177/16878140211042105
Journal volume & issue
Vol. 13

Abstract

Read online

This communication models the flow of viscous nanofluid between two heated parallel plates with radiation and uniform suction at one boundary. Two types of carbon nanotubes (CNTs) namely the single (SWCNT) and multiple (MWCNT) walls are accounted. Heat generation, radiation, and dissipation in heat expression are utilized. Entropy generation and Bejan number are examined. Formulation and analysis in rotating frame are considered. Convergent solutions for velocity and temperature are constructed and interpreted. Coefficient of skin-friction and Nusselt number are tabulated and analyzed for comparative study of SWCNT and MWCNT. Correlation for skin-friction and Nusselt number are also evaluated. An enhancement in velocity profile is seen through suction variable. A reduction occurs in axial velocity for higher Reynolds number. An opposite trend is hold for thermal field through Eckert and Prandtl numbers. An intensification in temperature is noted for radiation. An amplification in entropy rate is observed through Brinkman number. Higher Reynolds number corresponds to improve Bejan number. An improvement in radiation variable lead to rises heat transfer rate for both carbon nanotubes.