Journal of Orthopaedic Surgery and Research (May 2021)

miR-520c-3p regulates IL-1β-stimulated human chondrocyte apoptosis and cartilage degradation by targeting GAS2

  • Le Peng,
  • Ming Deng,
  • Yonggang Ma,
  • Wei Hu,
  • Fan Liang

DOI
https://doi.org/10.1186/s13018-021-02466-7
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background MicroRNAs (miRNAs) have been shown to be associated with osteoarthritis (OA) progression. This study aimed to explore the role of miR-520c-3p in OA progression. Methods Expression levels of miR-520c-3p and Growth arrest-specific 2 (GAS2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay and flow cytometry. Furthermore, the protein levels of apoptosis-related markers, extracellular degradation markers, inflammatory response markers, and GAS2 were tested using quantitative real-time polymerase chain reaction (RT-PCR) and western blot (WB) analysis. In addition, the interaction between miR-520c-3p and GAS2 was examined using dual luciferase reporter assay. Results GAS2 was highly expressed, and miR-520c-3p was lowly expressed in OA cartilage tissues. miR-520c-3p could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. miR-520c-3p could be sponged by GAS2, and its inhibitor could reverse the regulation of GAS2 on the biological functions of OA chondrocytes. GAS2 was a target of miR-520c-3p, which was identified by bioinformatic analysis and dual-luciferase reporter assay. Overexpression of GAS2 could inhibit the proliferation and promoted the apoptosis and inflammation of OA chondrocytes. Conclusion Our data showed that miR-520c-3p might regulate the GAS2 to inhibit the progression of OA.

Keywords