Journal of Orthopaedic Surgery and Research (May 2021)
miR-520c-3p regulates IL-1β-stimulated human chondrocyte apoptosis and cartilage degradation by targeting GAS2
Abstract
Abstract Background MicroRNAs (miRNAs) have been shown to be associated with osteoarthritis (OA) progression. This study aimed to explore the role of miR-520c-3p in OA progression. Methods Expression levels of miR-520c-3p and Growth arrest-specific 2 (GAS2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay and flow cytometry. Furthermore, the protein levels of apoptosis-related markers, extracellular degradation markers, inflammatory response markers, and GAS2 were tested using quantitative real-time polymerase chain reaction (RT-PCR) and western blot (WB) analysis. In addition, the interaction between miR-520c-3p and GAS2 was examined using dual luciferase reporter assay. Results GAS2 was highly expressed, and miR-520c-3p was lowly expressed in OA cartilage tissues. miR-520c-3p could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. miR-520c-3p could be sponged by GAS2, and its inhibitor could reverse the regulation of GAS2 on the biological functions of OA chondrocytes. GAS2 was a target of miR-520c-3p, which was identified by bioinformatic analysis and dual-luciferase reporter assay. Overexpression of GAS2 could inhibit the proliferation and promoted the apoptosis and inflammation of OA chondrocytes. Conclusion Our data showed that miR-520c-3p might regulate the GAS2 to inhibit the progression of OA.
Keywords