Microbiology Spectrum (Feb 2023)
Optimizing DNA Extraction from Pediatric Stool for Diagnosis of Tuberculosis and Use in Next-Generation Sequencing Applications
Abstract
ABSTRACT The WHO has endorsed the use of stool samples for diagnosis of tuberculosis (TB) in children, and targeted next-generation sequencing (tNGS) of stool has been shown to support diagnosis and provide information about drug susceptibility (DS). Optimizing extraction of DNA from stool for sequencing is critical to ensure high diagnostic sensitivity and accurate DS information. Human stool samples were spiked with various concentrations of Mycobacterium bovis bacillus Calmette-Guérin (BCG), and DNA was extracted from the samples using four different DNA extraction kits. Each sample was subjected to quantitative PCR for identifying Mycobacterium tuberculosis complex bacteria and underwent further analysis to assess the overall DNA yield, fragment length, and purity. This same process was performed with 10 pediatric participants diagnosed with pulmonary TB, and the samples underwent tNGS. The FastDNA spin kit for soil showed the best results on model samples spiked with known quantities of BCG, compared to the other extraction methods evaluated. For clinical samples, the FastDNA and PowerFecal Pro DNA (PowerFecal) kits both showed an increase in the overall DNA quantity, M. tuberculosis-specific DNA quantity, and successful targeted sequencing when testing was performed on stool samples, compared to the two other kits. Three samples extracted via PowerFecal and three samples extracted via FastDNA (from different patients) provided successful sequencing data, with an average depth of coverage of the rpoB region for FastDNA of 298 (range, 107 to 550) and for PowerFecal of 310 (range, 182 to 474), results that were comparable to one another (P = 0.946). The PowerFecal Pro and FastDNA spin kits were superior for extracting DNA from pediatric stool samples for tNGS. IMPORTANCE This is the first study to compare Mycobacterium tuberculosis DNA extraction techniques from pediatric stool samples for use with sequencing technologies. It provides an important starting point for other researchers to isolate quality DNA for this purpose to further the field and to continue to optimize protocols and approaches.
Keywords