mSystems (Dec 2022)

Coordination of CcpA and CodY Regulators in Staphylococcus aureus USA300 Strains

  • Saugat Poudel,
  • Ying Hefner,
  • Richard Szubin,
  • Anand Sastry,
  • Ye Gao,
  • Victor Nizet,
  • Bernhard O. Palsson

DOI
https://doi.org/10.1128/msystems.00480-22
Journal volume & issue
Vol. 7, no. 6

Abstract

Read online

ABSTRACT The complex cross talk between metabolism and gene regulatory networks makes it difficult to untangle individual constituents and study their precise roles and interactions. To address this issue, we modularized the transcriptional regulatory network (TRN) of the Staphylococcus aureus USA300 strain by applying independent component analysis (ICA) to 385 RNA sequencing samples. We then combined the modular TRN model with a metabolic model to study the regulation of carbon and amino acid metabolism. Our analysis showed that regulation of central carbon metabolism by CcpA and amino acid biosynthesis by CodY are closely coordinated. In general, S. aureus increases the expression of CodY-regulated genes in the presence of preferred carbon sources such as glucose. This transcriptional coordination was corroborated by metabolic model simulations that also showed increased amino acid biosynthesis in the presence of glucose. Further, we found that CodY and CcpA cooperatively regulate the expression of ribosome hibernation-promoting factor, thus linking metabolic cues with translation. In line with this hypothesis, expression of CodY-regulated genes is tightly correlated with expression of genes encoding ribosomal proteins. Together, we propose a coarse-grained model where expression of S. aureus genes encoding enzymes that control carbon flux and nitrogen flux through the system is coregulated with expression of translation machinery to modularly control protein synthesis. While this work focuses on three key regulators, the full TRN model we present contains 76 total independently modulated sets of genes, each with the potential to uncover other complex regulatory structures and interactions. IMPORTANCE Staphylococcus aureus is a versatile pathogen with an expanding antibiotic resistance profile. The biology underlying its clinical success emerges from an interplay of many systems such as metabolism and gene regulatory networks. This work brings together models for these two systems to establish fundamental principles governing the regulation of S. aureus central metabolism and protein synthesis. Studies of these fundamental biological principles are often confined to model organisms such as Escherichia coli. However, expanding these models to pathogens can provide a framework from which complex and clinically important phenotypes such as virulence and antibiotic resistance can be better understood. Additionally, the expanded gene regulatory network model presented here can deconvolute the biology underlying other important phenotypes in this pathogen.

Keywords