Single-Element Dual-Interferometer for Precision Inertial Sensing
Yichao Yang,
Kohei Yamamoto,
Victor Huarcaya,
Christoph Vorndamme,
Daniel Penkert,
Germán Fernández Barranco,
Thomas S. Schwarze,
Moritz Mehmet,
Juan Jose Esteban Delgado,
Jianjun Jia,
Gerhard Heinzel,
Miguel Dovale Álvarez
Affiliations
Yichao Yang
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Kohei Yamamoto
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Victor Huarcaya
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Christoph Vorndamme
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Daniel Penkert
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Germán Fernández Barranco
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Thomas S. Schwarze
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Moritz Mehmet
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Juan Jose Esteban Delgado
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Jianjun Jia
Key Laboratory of Space Active Opto-electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
Gerhard Heinzel
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Miguel Dovale Álvarez
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Institut für Gravitationsphysik, Leibniz Universität Hannover, Callinstrasse 38, D-30167 Hannover, Germany
Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout.