PLoS ONE (Jan 2012)

Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats.

  • Naoki Tajiri,
  • Sandra Acosta,
  • Loren E Glover,
  • Paula C Bickford,
  • Alejandra Jacotte Simancas,
  • Takao Yasuhara,
  • Isao Date,
  • Marianna A Solomita,
  • Ivana Antonucci,
  • Liborio Stuppia,
  • Yuji Kaneko,
  • Cesar V Borlongan

DOI
https://doi.org/10.1371/journal.pone.0043779
Journal volume & issue
Vol. 7, no. 8
p. e43779

Abstract

Read online

We recently reported isolation of viable rat amniotic fluid-derived stem (AFS) cells [1]. Here, we tested the therapeutic benefits of AFS cells in a rodent model of ischemic stroke. Adult male Sprague-Dawley rats received a 60-minute middle cerebral artery occlusion (MCAo). Thirty-five days later, animals exhibiting significant motor deficits received intravenous transplants of rat AFS cells or vehicle. At days 60-63 post-MCAo, significant recovery of motor and cognitive function was seen in stroke animals transplanted with AFS cells compared to vehicle-infused stroke animals. Infarct volume, as revealed by hematoxylin and eosin (H&E) staining, was significantly reduced, coupled with significant increments in the cell proliferation marker, Ki67, and the neuronal marker, MAP2, in the dentate gyrus (DG) [2] and the subventricular zone (SVZ) of AFS cell-transplanted stroke animals compared to vehicle-infused stroke animals. A significantly higher number of double-labeled Ki67/MAP2-positive cells and a similar trend towards increased Ki67/MAP2 double-labeling were observed in the DG and SVZ of AFS cell-transplanted stroke animals, respectively, compared to vehicle-infused stroke animals. This study reports the therapeutic potential of AFS cell transplantation in stroke animals, possibly via enhancement of endogenous repair mechanisms.