iScience (Feb 2022)

Multi-omics-based label-free metabolic flux inference reveals obesity-associated dysregulatory mechanisms in liver glucose metabolism

  • Saori Uematsu,
  • Satoshi Ohno,
  • Kaori Y. Tanaka,
  • Atsushi Hatano,
  • Toshiya Kokaji,
  • Yuki Ito,
  • Hiroyuki Kubota,
  • Ken-ichi Hironaka,
  • Yutaka Suzuki,
  • Masaki Matsumoto,
  • Keiichi I. Nakayama,
  • Akiyoshi Hirayama,
  • Tomoyoshi Soga,
  • Shinya Kuroda

Journal volume & issue
Vol. 25, no. 2
p. 103787

Abstract

Read online

Summary: Glucose homeostasis is maintained by modulation of metabolic flux. Enzymes and metabolites regulate the involved metabolic pathways. Dysregulation of glucose homeostasis is a pathological event in obesity. Analyzing metabolic pathways and the mechanisms contributing to obesity-associated dysregulation in vivo is challenging. Here, we introduce OMELET: Omics-Based Metabolic Flux Estimation without Labeling for Extended Trans-omic Analysis. OMELET uses metabolomic, proteomic, and transcriptomic data to identify relative changes in metabolic flux, and to calculate contributions of metabolites, enzymes, and transcripts to the changes in metabolic flux. By evaluating the livers of fasting ob/ob mice, we found that increased metabolic flux through gluconeogenesis resulted primarily from increased transcripts, whereas that through the pyruvate cycle resulted from both increased transcripts and changes in substrates of metabolic enzymes. With OMELET, we identified mechanisms underlying the obesity-associated dysregulation of metabolic flux in the liver.

Keywords