Ecotoxicology and Environmental Safety (Sep 2023)

SeNPs alleviates BDE-209-induced intestinal damage by affecting necroptosis, inflammation, intestinal barrier and intestinal flora in layer chickens

  • Zhuoqi Zhang,
  • Jianhua Shan,
  • Bendong Shi,
  • Bowen Dong,
  • Qiong Wu,
  • Ziwei Zhang

Journal volume & issue
Vol. 262
p. 115336

Abstract

Read online

As environmental pollutants, polybrominated diphenyl ethers (PBDEs) can have toxic effects on living organisms and has a bioaccumulative effect. Low doses of selenium nanoparticles (SeNPs) can exert antioxidant, anti-inflammatory and anti-toxin functions on the organism. This experiment evaluated SeNPs' ability to prevent chicken’s intestinal damage from decabromodiphenyl ether (BDE-209) exposure. Sixty layer chickens were separated into four groups at randomly and equally: Control group, SeNPs group (1 mg/kg SeNPs), BDE-209 group (400 mg/kg BDE-209), and BDE-209 +SeNPs group (400 mg/kg BDE-209 and 1 mg/kg SeNPs), for 42 days. The results showed that BDE-209 increased MDA content, decreased the activities of T-SOD, T-AOC, GSH and iNOS, up-regulated the expression of TNF-α, RIPK1, RIPK3 and MLKL, promoted the production of inflammatory factors, reduced the levels of tight junction proteins (Claudin-1, Occludin, ZO-1). SeNPs attenuated intestinal oxidative stress, necroptosis, inflammation and intestinal barrier damage caused by BDE-209. This protective effect is associated with the MAPK/NF-κB signaling pathway. Moreover, SeNPs restores flora alpha and beta diversity, improves intestinal flora composition and its abundance. It shifts the dysbiosis of intestinal flora caused by BDE-209 to normal. Overall, SeNPs can alleviate BDE-209-induced intestinal barrier damage and intestinal flora disorders, which are associated with intestinal oxidative stress, necroptosis and inflammation.

Keywords