IEEE Access (Jan 2023)
Controlling of Fake Information Dissemination in Online Social Networks: An Epidemiological Approach
Abstract
Due to the fast advancement of Internet technology, the popularity of Online Social Networks (OSN) over the Internet is increasing day by day. In the modern world, people are using OSN to communicate with others around the world who may or may not know each other. OSN has become the most convenient means to transmit media (news/content) and gather or spread information in the world. The posts (contents) on OSN affect and impact people, and minds at least for some time. These contents are important because they play a crucial role in taking the decision. The posts which are available on the OSN may be information or just misinformation. The misinformation may be a type of fake news or rumour. This is very difficult for people to differentiate whether the posts are information or rumour. Therefore, the development of techniques that can prevent the transmission of false information or rumours that might harm society in any way is critical. In this paper, a model is developed based on the epidemic approach, for examining and controlling fake information dissemination in OSN. The proposed model illustrates how different misinformation debunking measures impact and how misinformation spreads among different groups. In this article, we explain that the proposed model will be able to recognize and eradicate fake news from OSN. The model is written as a system of differential equations. Its equilibrium and stability are also carefully examined. The basic reproduction number $(R_{0})$ is calculated, which is an important parameter in the study of message propagation in OSN. If $R_{0} < 1$ , the propagation of rumor in the OSN will be minimal; nevertheless, if $R_{0} > 1$ , the fake information/rumor will continue in OSN. The effects of disinformation of rumours in OSN in the real world are explored. In addition, the model covers the fake information/rumour dissemination control mechanism. The comparative study shows that the proposed model provides a better mechanism to prevent the dissemination of fake information in OSN in comparison to other previous models Extensive theoretical study and computation analysis have also been used to validate the proposed model
Keywords