Journal of NeuroEngineering and Rehabilitation (Dec 2007)

Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial

  • Brown Cathleen N,
  • Blackburn J Troy,
  • Arnold Brent L,
  • Ross Scott E,
  • Guskiewicz Kevin M

DOI
https://doi.org/10.1186/1743-0003-4-47
Journal volume & issue
Vol. 4, no. 1
p. 47

Abstract

Read online

Abstract Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s), M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s), M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0.11 cm), M/L COPmax (1.76 ± 0.25 cm vs. 1.98 ± 0.25 cm), and COParea (0.13 ± 0.03 cm2 vs. 0.16 ± 0.04 cm2) than the pooled means of the CCT and control groups (P Conclusion Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI.