Scientific Reports (Apr 2023)
Short-term ocular dominance plasticity is not modulated by visual cortex tDCS but increases with length of monocular deprivation
Abstract
Abstract Transcranial direct current stimulation (tDCS) of the occipital lobe may modulate visual cortex neuroplasticity. We assessed the acute effect of visual cortex anodal (a-)tDCS on ocular dominance plasticity induced by short-term monocular deprivation (MD), a well-established technique for inducing homeostatic plasticity in the visual system. In Experiment 1, active or sham visual cortex tDCS was applied during the last 20 min of 2-h MD following a within-subjects design (n = 17). Ocular dominance was measured using two computerized tests. The magnitude of ocular dominance plasticity was unaffected by a-tDCS. In Experiment 2 (n = 9), we investigated whether a ceiling effect of MD was masking the effect of active tDCS. We replicated Experiment 1 but used only 30 min of MD. The magnitude of ocular dominance plasticity was decreased with the shorter intervention, but there was still no effect of active a-tDCS. Within the constraints of our experimental design and a-tDCS parameters, visual cortex a-tDCS did not modulate the homeostatic mechanisms that drive ocular dominance plasticity in participants with normal binocular vision.