Deep deterministic policy gradient algorithm: A systematic review
Ebrahim Hamid Sumiea,
Said Jadid Abdulkadir,
Hitham Seddig Alhussian,
Safwan Mahmood Al-Selwi,
Alawi Alqushaibi,
Mohammed Gamal Ragab,
Suliman Mohamed Fati
Affiliations
Ebrahim Hamid Sumiea
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Corresponding author at: Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
Said Jadid Abdulkadir
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
Hitham Seddig Alhussian
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
Safwan Mahmood Al-Selwi
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
Alawi Alqushaibi
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
Mohammed Gamal Ragab
Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia
Suliman Mohamed Fati
Information Systems Department, Prince Sultan University, Riyadh, Saudi Arabia
Deep Reinforcement Learning (DRL) has gained significant adoption in diverse fields and applications, mainly due to its proficiency in resolving complicated decision-making problems in spaces with high-dimensional states and actions. Deep Deterministic Policy Gradient (DDPG) is a well-known DRL algorithm that adopts an actor-critic approach, synthesizing the advantages of value-based and policy-based reinforcement learning methods. The aim of this study is to provide a thorough examination of the latest developments, patterns, obstacles, and potential opportunities related to DDPG. A systematic search was conducted using relevant academic databases (Scopus, Web of Science, and ScienceDirect) to identify 85 relevant studies published in the last five years (2018-2023). We provide a comprehensive overview of the key concepts and components of DDPG, including its formulation, implementation, and training. Then, we highlight the various applications and domains of DDPG, including Autonomous Driving, Unmanned Aerial Vehicles, Resource Allocation, Communications and the Internet of Things, Robotics, and Finance. Additionally, we provide an in-depth comparison of DDPG with other DRL algorithms and traditional RL methods, highlighting its strengths and weaknesses. We believe that this review will be an essential resource for researchers, offering them valuable insights into the methods and techniques utilized in the field of DRL and DDPG.