PLoS ONE (Jan 2013)
Cerebroside C increases tolerance to chilling injury and alters lipid composition in wheat roots.
Abstract
Chilling tolerance was increased in seed germination and root growth of wheat seedlings grown in media containing 20 µg/mL cerebroside C (CC), isolated from the endophytic Phyllosticta sp. TG78. Seeds treated with 20 µg/mL CC at 4 °C expressed the higher germination rate (77.78%), potential (23.46%), index (3.44) and the shorter germination time (6.19 d); root growth was also significantly improved by 13.76% in length, 13.44% in fresh weight and 6.88% in dry mass compared to controls. During the cultivation process at 4 °C for three days and the followed 24 h at 25 °C, lipid peroxidation, expressed by malondialdehyde (MDA) content and relative membrane permeability (RMP) was significantly reduced in CC-treated roots; activities of lipoxygenase (LOX), phospholipid C (PLC) and phospholipid D (PLD) were inhibited by 13.62-62.26%, 13.54-63.93% and 13.90-61.17%, respectively; unsaturation degree of fatty acids was enhanced through detecting the contents of CC-induced linoleic acid, linolenic acid, palmitic acid and stearic acid using GC-MS; capacities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) were individually increased by 7.69-46.06%, 3.37-37.96%, and -7.00-178.07%. These results suggest that increased chilling tolerance may be due, in part, to the reduction of lipid peroxidation and alternation of lipid composition of roots in the presence of CC.