Shiyou shiyan dizhi (Sep 2020)

Advance of basin modeling key techniques: hydrocarbon migration and accumulation simulation

  • Qiulin GUO,
  • Ningsheng CHEN,
  • Zhuangxiaoxue LIU,
  • Jifeng LIU,
  • Jingdu YU

DOI
https://doi.org/10.11781/sysydz202005846
Journal volume & issue
Vol. 42, no. 5
pp. 846 – 857

Abstract

Read online

This paper summarizes traditional basin modeling, points out new application fields and technical problems, and discusses the present situation and progress of three kinds of hydrocarbon migration and accumulation simulation techniques.(a) Flowpath modeling. Evolved from reservoir numerical simulation, this technology is rapid and is suitable for structural reservoirs; however, it cannot effectively simulate stratigraphic reservoirs.By establishing a simplified 3D geological model, the description of 3D trap space and reservoir physical properties is realized and the problem of stratigraphic reservoir simulation is solved, and the leap of streamlined simulation technology is realized.(b) Invasion percolation. It is now practical, but the description of fault, unconformity surface and other transport systems under complex geological conditions is not detailed enough to assign parameters to the fault or unconformity surface alone.The 3D mesh modeling method of transport systems and 3D path tracing technology based on a Mesh System can effectively analyze the oil-gas migration path, simulate the process of oil-gas accumulation, reservoir adjustment and secondary reservoir formation, and improve the technology greatly.(c) 3D Darcy flow. This is the most advanced technology in theory, but it is difficult to constrain the geological parameters with sufficient precision. Therefore, improving the geological grid model and accurately describing the geological parameters are important in the development of a 3D Darcy flow model. Establishing a 3D geological model of the bedding columnar PEBI (Perpendicular Bisection) grid, constructing the seepage equation under the condition of variable grid, and introducing vector permeability, can solve the seepage problem under complex geological conditions, and improve the simulation technology.

Keywords