Atmosphere (Sep 2019)

Spatiotemporal Variations of Meteorological Droughts and the Assessments of Agricultural Drought Risk in a Typical Agricultural Province of China

  • Mengjing Guo,
  • Jing Li,
  • Yongsheng Wang,
  • Qiubo Long,
  • Peng Bai

DOI
https://doi.org/10.3390/atmos10090542
Journal volume & issue
Vol. 10, no. 9
p. 542

Abstract

Read online

Drought is one of the most common natural disasters on a global scale and has a wide range of socioeconomic impacts. In this study, we analyzed the spatiotemporal variations of meteorological drought in a typical agricultural province of China (i.e., Shaanxi Province) based on the Standard Precipitation Evapotranspiration Index (SPEI). We also investigated the response of winter wheat and summer maize yields to drought by a correlation analysis between the detrended SPEI and the time series of yield anomaly during the crop growing season. Moreover, agricultural drought risks were assessed across the province using a conceptual risk assessment model that emphasizes the combined role of drought hazard and vulnerability. The results indicated that droughts have become more severe and frequent in the study area after 1995. The four typical timescales of SPEI showed a consistent decreasing trend during the period 1960−2016; the central plains of the province showed the most significant decreasing trend, where is the main producing area of the province’s grain. Furthermore, the frequency and intensity of drought increased significantly after 1995; the most severe drought episodes occurred in 2015−2016. Our results also showed that the sensitivity of crop yield to drought varies with the timescales of droughts. Droughts at six-month timescales that occurred in March can explain the yield losses for winter wheat to the greatest extent, while the yield losses of summer maize are more sensitive to droughts at three-month timescales that occurred in August. The assessment agricultural drought risk showed that some areas in the north of the province are exposed to a higher risk of drought and other regions are dominated by low risk.

Keywords