Crystals (Jan 2020)
Incorporation of Cd-Doping in SnO<sub>2</sub>
Abstract
Tuning the electrical properties of materials by controlling their doping content has been utilized for decades in semiconducting oxides. Here, an atomistic view is successfully employed to obtain local information on the charge distribution and point defects in Cd-doped SnO2. We present a study that uses the time-differential perturbed gamma−gamma angular correlations (TDPAC) method in samples prepared by using a sol−gel approach. The hyperfine field parameters are presented as functions of the annealing temperature in pellet samples to show the evolution of incorporating Cd dopants into the crystal lattice. Additionally, the system was characterized with X-ray fluorescence, electron dispersive spectroscopy, and scanning electron microscopy after the probe nuclei 111In(111Cd) decayed. The TDPAC results reveal that the probe ions were incorporated into two different local environments of the SnO2 lattice at temperatures up to 973 K for cation substitutional sites.
Keywords