Sensors (Jan 2022)

System on Chip (SoC) for Invisible Electrocardiography (ECG) Biometrics

  • Francisco de Melo,
  • Horácio C. Neto,
  • Hugo Plácido da Silva

DOI
https://doi.org/10.3390/s22010348
Journal volume & issue
Vol. 22, no. 1
p. 348

Abstract

Read online

Biometric identification systems are a fundamental building block of modern security. However, conventional biometric methods cannot easily cope with their intrinsic security liabilities, as they can be affected by environmental factors, can be easily “fooled” by artificial replicas, among other caveats. This has lead researchers to explore other modalities, in particular based on physiological signals. Electrocardiography (ECG) has seen a growing interest, and many ECG-enabled security identification devices have been proposed in recent years, as electrocardiography signals are, in particular, a very appealing solution for today’s demanding security systems—mainly due to the intrinsic aliveness detection advantages. These Electrocardiography (ECG)-enabled devices often need to meet small size, low throughput, and power constraints (e.g., battery-powered), thus needing to be both resource and energy-efficient. However, to date little attention has been given to the computational performance, in particular targeting the deployment with edge processing in limited resource devices. As such, this work proposes an implementation of an Artificial Intelligence (AI)-enabled ECG-based identification embedded system, composed of a RISC-V based System-on-a-Chip (SoC). A Binary Convolutional Neural Network (BCNN) was implemented in our SoC’s hardware accelerator that, when compared to a software implementation of a conventional, non-binarized, Convolutional Neural Network (CNN) version of our network, achieves a 176,270× speedup, arguably outperforming all the current state-of-the-art CNN-based ECG identification methods.

Keywords