Agronomy (Feb 2024)

Metabolomics Analysis of Variation in Grain Quality of High-Quality <i>Japonica</i> Rice

  • Qiang Shi,
  • Ruizhi Wang,
  • Wenjie Lu,
  • Jinyan Zhu,
  • Hongcheng Zhang,
  • Qiangqiang Xiong,
  • Nianbing Zhou

DOI
https://doi.org/10.3390/agronomy14030430
Journal volume & issue
Vol. 14, no. 3
p. 430

Abstract

Read online

In recent years, the semi-glutinous japonica rice variety has been extensively utilized in Jiangsu Province to greatly increase rice quality. Nevertheless, the increasing occurrence of seed variation presented a major threat to rice quality. Enhancing the quality of rice grains has emerged as a critical factor in guaranteeing consumer acceptance. Throughout this investigation, five lines (VJ1, VJ2, VJ3, VJ4, and VJ5) selected from the Nanjing9108 population in Liyang were used as research materials, and original cultivars of Nanjing9108 (CKJ1) provided by the original breeder were utilized as control materials to compare rice quality and differential metabolites. VJ4 and VJ3 demonstrated a significant reduction in milled rice rate and head milled rice rate when contrasted to CKJ1. Compared with CKJ1, the amylose content of the five strains was significantly increased. Only VJ3 amplified the 106 bp target band, and its 2-AP content was 0 ng/g. Most metabolites are mainly enriched in cutin, suberine, wax biosynthesis, histidine, and tryptophan metabolism. The primary metabolites throughout the metabolic pathway involve lipids and lipid-like molecules (mono palmitin, alpha-eleostearic, and palmitic acid) and amino acid metabolites (L-glutamate, L-tryptophan, and L-serine). The identification of these key metabolites helps in the discovery of prospective biomarkers for screening seed variation throughout seed production.

Keywords