Bioengineering (Jul 2024)
Deep Attention Fusion Hashing (DAFH) Model for Medical Image Retrieval
Abstract
In medical image retrieval, accurately retrieving relevant images significantly impacts clinical decision making and diagnostics. Traditional image-retrieval systems primarily rely on single-dimensional image data, while current deep-hashing methods are capable of learning complex feature representations. However, retrieval accuracy and efficiency are hindered by diverse modalities and limited sample sizes. Objective: To address this, we propose a novel deep learning-based hashing model, the Deep Attention Fusion Hashing (DAFH) model, which integrates advanced attention mechanisms with medical imaging data. Methods: The DAFH model enhances retrieval performance by integrating multi-modality medical imaging data and employing attention mechanisms to optimize the feature extraction process. Utilizing multimodal medical image data from the Cancer Imaging Archive (TCIA), this study constructed and trained a deep hashing network that achieves high-precision classification of various cancer types. Results: At hash code lengths of 16, 32, and 48 bits, the model respectively attained Mean Average Precision (MAP@10) values of 0.711, 0.754, and 0.762, highlighting the potential and advantage of the DAFH model in medical image retrieval. Conclusions: The DAFH model demonstrates significant improvements in the efficiency and accuracy of medical image retrieval, proving to be a valuable tool in clinical settings.
Keywords