PLoS ONE (Jan 2014)

Localized rejuvenation of a crystal mush recorded in zircon temporal and compositional variation at the Lassen Volcanic Center, northern California.

  • Erik W Klemetti,
  • Michael A Clynne

DOI
https://doi.org/10.1371/journal.pone.0113157
Journal volume & issue
Vol. 9, no. 12
p. e113157

Abstract

Read online

Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC) allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals) within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak) and rhyodacite (1.1 ka eruption of Chaos Crags). These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ∼17 ka to secular equilibrium (>350 ka), with most zircon crystallizing during a period between ∼60-200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ∼190 ka. Most zircon are thought to have been captured from "cold storage" in the crystal mush (670-725°C, Hf >10,000 ppm, Eu/Eu* 0.25-0.4) locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf 0.4) grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s-1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.