پژوهش‌های حفاظت آب و خاک (Dec 2015)

کاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی

  • طاهر رجایی,
  • هادی ابراهیمی

Journal volume & issue
Vol. 22, no. 5
pp. 99 – 115

Abstract

Read online

سفره ‏های آب زیرزمینی غالباً به عنوان سیستم ‏هایی با ویژگی ‏های غیرایستا و غیرخطی شناخته می ‏شوند. مدل‏ سازی این سیستم ‏ها و پیش ‏بینی حالت ‏های آینده آن ‏ها نیازمند تشخیص این ویژگی‏ های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی‏ های اشاره‏ شده، به طور گسترده ‏ای در زمینه پیش ‏بینی سری‏ های زمانی هیدرولوژیکی مورد استفاده قرار گرفته ‏است. در این مقاله توانایی مدل ترکیبی شبکه عصبی- موجک که از روش جمع زیرسری‏ ها استفاده می‏ کند، در پیش‏ بینی تراز آب زیرزمینی ارزیابی شده ‏‏است. داده ‏های استفاده ‏شده برای تشکیل مدل‏ شامل تراز آب زیرزمینی ماهانه و بارندگی ماهانه دو پیزومتر واقع در دشت قم به مدت 20 سال است. پیش‏ بینی 12 ماه آینده با مدل ترکیبی شبکه عصبی- موجک نشان داد خطای این مدل در مقایسه با مدل شبکه عصبی به میزان 30 و 23 درصد و در مقایسه با مدل رگرسیون خطی چندمتغیره 37 و 51 درصد به ترتیب برای پیزومترهای 1 و 2 کمتر است. همچنین نتایج نشان داد بارندگی اثر قابل توجهی روی تغییرات تراز آب زیرزمینی دو پیزومتر مطالعاتی ندارد؛ اگرچه در زیرسری‏ های جزئیات حاصل از تجزیه موجکی، استفاده از بارندگی باعث بهبود نتایج شد.

Keywords