Statistics and Public Policy (Dec 2022)

Signal Weighted Teacher Value-Added Models

  • Edward J. Kim

DOI
https://doi.org/10.1080/2330443X.2022.2105769
Journal volume & issue
Vol. 9, no. 1
pp. 149 – 162

Abstract

Read online

This study introduces the signal weighted teacher value-added model (SW VAM), a value-added model that weights student-level observations based on each student’s capacity to signal their assigned teacher’s quality. Specifically, the model leverages the repeated appearance of a given student to estimate student reliability and sensitivity parameters, whereas traditional VAMs represent a special case where all students exhibit identical parameters. Simulation study results indicate that SW VAMs outperform traditional VAMs at recovering true teacher quality when the assumption of student parameter invariance is met but have mixed performance under alternative assumptions of the true data generating process depending on data availability and the choice of priors. Evidence using an empirical dataset suggests that SW VAM and traditional VAM results may disagree meaningfully in practice. These findings suggest that SW VAMs have promising potential to recover true teacher value-added in practical applications and, as a version of value-added models that attends to student differences, can be used to test the validity of traditional VAM assumptions in empirical contexts.

Keywords