Iranian Journal of Basic Medical Sciences (Nov 2023)

Preparation and characterization of Tamoxifen loaded silica and NH2 functionalized mesoporous silica nanoparticles as delivery systems against MCF-7 breast cancer cells

  • Sepideh Taghavi,
  • Mostafa Shahnani,
  • Hasan Rafati

DOI
https://doi.org/10.22038/ijbms.2023.70152.15254
Journal volume & issue
Vol. 26, no. 11
pp. 1334 – 1341

Abstract

Read online

Objective(s): Controlled drug delivery using nanotechnology enhances drug targeting at the site of interest and prevents drug dispersal throughout the body. This study focused on loading a poorly water-soluble drug Tamoxifen (TMX) into silica nanoparticles (SNPs) and amine-functionalized mesoporous silica nanoparticles (NH2-SBA-15). Materials and Methods: SNPs were prepared according to the Stöber method and functionalized with an amine group using 3-aminopropyl triethoxysilane (APTES) through a one-pot synthesis method to produce amine-functionalized mesoporous silica nanoparticles (NH2-SBA-15). Characterization of both nanoparticles was performed using FT-IR, FE-SEM, CHN analysis, porosity tests (BET), and dynamic light scattering (DLS). Results: The results showed an average particle size of 103.7 nm for SNPs and 225.9 nm for NH2-SBA-15. Based on the BET results, the pore size of NH2-SBA-15 was about 5.4 nm. In both silica nanoparticles, drug release at pH=5.7 was greater than that of pH=7.4. However, Tamoxifen-loaded NH2-SBA-15 (TMX@NH2-SBA-15) indicated the highest drug release in the acidic medium among TMX-loaded SNPs (TMX@SNPs), perhaps due to the high columbic repulsion in the functionalized NH2-SBA-15 nanoparticles. Regarding cytotoxicity results against MCF-7 breast cancer cell lines, both TMX@SNPs and TMX@NH2-SBA-15 nanoparticles exhibited greater cytotoxicity compared to the free TMX as a positive control. Although TMX@SNPs had a small size and high loading capacity, the cytotoxic effects were higher than those of [email protected]: Amine functionalization of SNPs can improve the potential activity of these nanoparticles for target therapy.

Keywords