Forests (Feb 2024)

Spatial, Geographical, Climatic, and Edaphic Influences on Moss Community Structure: A Case Study from Qinhuangdao, China

  • Guochen Zheng,
  • Jiqi Gu,
  • Wei Zhao,
  • Yuhan Zhang,
  • Zidan Guan,
  • Ming Lei,
  • Chenyang He

DOI
https://doi.org/10.3390/f15030424
Journal volume & issue
Vol. 15, no. 3
p. 424

Abstract

Read online

In the realms of ecology and biogeography, the interaction between biodiversity and environmental factors is a critical area of research. This intersection highlights how biological communities, especially among groups like bryophytes, are influenced and shaped by their surrounding environmental conditions. This study presents a pioneering investigation into the diversity and community structure of mosses in Qinhuangdao, Hubei Province, China, a region marked by its diverse topography and climate. Employing extensive field surveys across 30 plots, we gathered and analyzed the relationship between moss species distribution and environmental variables, including topographical, climatic, and soil factors. Utilizing a range of analytical techniques, such as cluster analysis, canonical correspondence analysis (CCA), and partial least squares path modeling (PLS-PM), we characterized the intricate relationships between moss biodiversity and environmental gradients. The research has documented 84 species distributed among 36 genera and 13 families. Solar radiation has a great impact on moss diversity. There were significant differences between Form. Entodon compressus and Form. Plagiobryum demissum. Climate has a great impact on the community structure of mosses. Geographical factors were also identified as key secondary influences, affecting moss community structures both directly and indirectly by creating suitable microenvironments and influencing climate and soil properties. Additionally, the study highlights the indirect impact of spatial factors on these environmental variables, which in turn shape the structure of biological communities. The findings indicate that the annual temperature range is a key factor influencing the distribution and formation of moss community structures. The findings provide new insights into the ecological adaptation of mosses in diverse environmental settings and lay a crucial foundation for biodiversity conservation and ecosystem management in the Qinhuangdao area.

Keywords