Antioxidants (Aug 2022)

Red Palm Oil Ameliorates Oxidative Challenge and Inflammatory Responses Associated with Lipopolysaccharide-Induced Hepatic Injury by Modulating NF-κβ and Nrf2/GCL/HO-1 Signaling Pathways in Rats

  • Olawale R. Ajuwon,
  • Jeanine L. Marnewick,
  • Oluwafemi O. Oguntibeju,
  • Lester M. Davids

DOI
https://doi.org/10.3390/antiox11081629
Journal volume & issue
Vol. 11, no. 8
p. 1629

Abstract

Read online

Lipopolysaccharide (LPS), a well-conserved cell wall component of Gram positive bacteria, exerts its toxic effects via inducing oxidative and pro-inflammatory responses. Red palm oil (RPO) is a unique natural product with a balanced ratio of saturated and unsaturated fatty acids, with reported antioxidant and anti-inflammatory effects. In this study, we assess the protective effect and mechanistic action of RPO using a lipopolysaccharide (LPS)-induced hepatic injury model. Male Wistar rats were assigned into four groups (10 animals/group): normal control (NC), RPO, LPS and RPO + LPS. Animals in the RPO and RPO + LPS groups were administered RPO (200 μL/day) for 28 days. On the 27th day of experiment, animals in LPS and RPO + LPS groups were injected with LPS (0.5 mg/kg body weight). Animals were sacrificed 24 h later, and blood and liver tissues harvested for biochemical and molecular analysis. RPO resolved hepatic histological dysfunction induced by LPS, and lowered alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transferase activities in the serum. Hepatic malondialdehyde and conjugated dienes, as well as pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6 and TNFα were significantly diminished (p < 0.05) by RPO pre-treatment. Activity of hepatic antioxidant enzymes including superoxide dismutase, glutathione reductase, glutathione peroxidase, as well as glutathione redox status (GSH:GSSG), and markers of antioxidant capacity that decreased as a result of LPS injection were improved by RPO pre-treatment. Mechanistically, RPO up-regulated mRNA expression of redox sensitive transcription factor Nrf2 and its downstream targets GCL and HO-1, while also suppressing the expression of NFκβ and associated inflammatory protein, Iκβ kinase (IκKβ). In conclusion, this study highlights the ameliorating effects of RPO against LPS-induced hepatic injury and revealed the Nrf2/GCL/HO-1 and NFκβ signaling axis as potential contributing mechanisms.

Keywords