Molecular Cancer (Nov 2003)
Overexpression of CCL-21/Secondary Lymphoid Tissue Chemokine in Human Dendritic Cells Augments Chemotactic Activities for Lymphocytes and Antigen Presenting Cells
Abstract
Abstract Background Ex vivo generated dendritic cells (DC) genetically modified to express secondary lymphoid tissue chemokine (CCL-21/SLC) have been shown to stimulate potent antitumor responses in murine models. When injected intratumorally, CCL-21 colocalizes DC and lymphocyte effector cells at the tumor site. This may improve tumor antigen presentation and T cell activation by utilizing the tumor as an in vivo source of antigen for DC. In order to develop DC-based cancer therapies for intratumoral injection that could promote tumor antigen uptake and presentation in situ, we constructed and characterized an adenoviral vector that expresses human CCL-21 (AdCCL-21). Results Human monocyte derived DC were cultured in GM-CSF and IL-4 for 6 days. Following AdCCL-21 transduction, CCL-21 protein production was assessed by ELISA on day 8. DC transduced with AdCCL-21 at multiplicities of infection (MOIs) of 50:1 or 100:1 produced up to 210 ± 9 ng/ml and 278 ± 6.5 ng/ml /106 cells/48 hours, respectively. Following transduction, an immature DC phenotype was maintained and an upregulation of the costimulatory molecule, CD86 was noted. In addition, supernatant from AdCCL-21-DC caused significant chemotaxis of peripheral blood lymphocytes and mature DC. Conclusions These studies demonstrate that AdCCL-21-DC generate functional levels of CCL-21 without adversely altering DC phenotype. These findings strengthen the rationale for further investigation of AdCCL-21-DC as a DC-based therapy in cancer treatment.