Frontiers in Forests and Global Change (Jan 2023)
Evaluation of the regional climate model for the forest area of Yunnan in China
Abstract
Climate change is becoming increasingly severe. Today, several studies have found that climate change substantially influences the increasing number of forest fires. Regional climate models (RCMs) are currently a vital tool for climate forecasting in researching how to combat forest fires. As China’s forest fire area, Yunnan province has frequent forest fires that generate significant losses, so it is a crucial area for forest fire prevention in China. Therefore, this study uses meteorological observational data from 25 stations in Yunnan over the period 2004–2018 to compares and evaluates the Regional Climate Forecast Model (RegCM) and Weather Research and Forecasting model (WRF) in multiple dimensions. The optimal RCM is then determined for the forest area of Yunnan. The results show that the deviations of RegCM predictions from the spatial mean of the real temperature are less than 3°C, whereas the deviations of WRF are all greater than 3°C. In addition, the RegCM correlation coefficient exceeds 0.8, whereas the WRF correlation coefficient exceeds 0.75. In terms of precipitation, the deviation of RegCM predictions for the whole territory is less than 2 mm, whereas the overall deviation of WRF predictions is great. The correlation coefficient for RegCM and WRF are both less than 0.5, but the RegCM correlation coefficient exceeds that of the WRF. We thus conclude that RegCM is more suitable for predicting the climate of the forest area of Yunnan. This study also provides references for related climate forecasting and research into forest fire dynamics in general.
Keywords