Current Research in Neurobiology (Jan 2023)

Insulin-like growth factor-1 stimulates retinal cell proliferation via activation of multiple signaling pathways

  • Camila Saggioro de Figueiredo,
  • Ícaro Raony,
  • Simone Vidal Medina,
  • Eliezer de Mello Silva,
  • Aline Araujo dos Santos,
  • Elizabeth Giestal-de-Araujo

Journal volume & issue
Vol. 4
p. 100068

Abstract

Read online

Insulin-like growth factor-1 (IGF-1) plays critical roles in the development of the central nervous system (CNS), including the retina, regulating cell proliferation, differentiation, and survival. Here, we investigated the role of IGF-1 on retinal cell proliferation using primary cultures from rat neural retina. Our data show that IGF-1 stimulates retinal cell proliferation and regulates the expression of neurotrophic factors, such as interleukin-4 and brain-derived neurotrophic factor. In addition, our results indicates that IGF-1-induced retinal cell proliferation requires activation of multiple signaling pathways, including phosphatidylinositol 3-kinase, protein kinase Src, phospholipase-C, protein kinase C delta, and mitogen-activated protein kinase pathways. We further show that activation of matrix metalloproteinases and epidermal growth factor receptor is also necessary for IGF-1 enhancing retinal cell proliferation. Overall, these results unveil potential mechanisms by which IGF-1 ensures retinal cell proliferation and support the notion that manipulation of IGF-1 signaling may be beneficial in CNS disorders associated with abnormal cell proliferation.

Keywords