Sensors (Mar 2021)

Deep Learning-Based Congestion Detection at Urban Intersections

  • Xinghai Yang,
  • Fengjiao Wang,
  • Zhiquan Bai,
  • Feifei Xun,
  • Yulin Zhang,
  • Xiuyang Zhao

DOI
https://doi.org/10.3390/s21062052
Journal volume & issue
Vol. 21, no. 6
p. 2052

Abstract

Read online

In this paper, a deep learning-based traffic state discrimination method is proposed to detect traffic congestion at urban intersections. The detection algorithm includes two parts, global speed detection and a traffic state discrimination algorithm. Firstly, the region of interest (ROI) is selected as the road intersection from the input image of the You Only Look Once (YOLO) v3 object detection algorithm for vehicle target detection. The Lucas-Kanade (LK) optical flow method is employed to calculate the vehicle speed. Then, the corresponding intersection state can be obtained based on the vehicle speed and the discrimination algorithm. The detection of the vehicle takes the position information obtained by YOLOv3 as the input of the LK optical flow algorithm and forms an optical flow vector to complete the vehicle speed detection. Experimental results show that the detection algorithm can detect the vehicle speed and traffic state discrimination method can judge the traffic state accurately, which has a strong anti-interference ability and meets the practical application requirements.

Keywords