Bioengineering (Feb 2025)
Commercial NIRS May Not Detect Hemispheric Regional Disparity in Continuously Measured COx/COx-a: An Exploratory Healthy and Cranial Trauma Time-Series Analysis
Abstract
Continuous metrics of cerebral autoregulation (CA) assessment have been developed using various multimodal cerebral physiological monitoring devices. However, CA regional disparity remains unclear in states of health and disease. Leveraging existing archived data sources, we preliminarily evaluated regional hemispheric disparity in CA using the near infrared spectroscopy (NIRS)-derived cerebral oximetry index (COx/COx-a). Along with bilateral NIRS, regional cerebral oxygen saturation, arterial blood pressure, cerebral perfusion pressure, and bilateral COx/COx-a were derived using three different temporal resolutions—10 s, 1 min, and 5 min—based on non-overlapping mean values. The regional disparity between hemispheres was evaluated based on median and median absolute deviation. Further, patient-level autoregressive integrative moving average models were calculated for each signal stream and used to generate personalized vector autoregressive models. Multi-variate cerebral physiologic relationships between hemispheres were assessed via impulse response functions and Granger causality analyses. Data from 102 healthy control volunteers, 27 spinal surgery patients, and 95 TBI patients (varying in frontal lobe pathology impacting the optode path; 64 without bifrontal lobe pathology, 15 without left frontal lobe pathology, 11 without right frontal lobe pathology, and 5 with bifrontal lobe pathology) were retrospectively analyzed. For subjects with or without cranial pathology, no difference in COx/COx-a was found between hemispheres regardless of the analytic method. In TBI patients without pathology underneath the NIRS sensor, distant parenchymal injury does not seem to have an effect on the CA of uninjured frontal lobes. Further work is required to characterize regional disparities with multi-channel CA measurements in healthy and disease states.
Keywords