EPJ Web of Conferences (Jan 2018)

Prediction procedure for hail impact

  • Dousset Simon,
  • Girardot Jérémie,
  • Dau Frédéric,
  • Gakwaya Augustin

DOI
https://doi.org/10.1051/epjconf/201818301046
Journal volume & issue
Vol. 183
p. 01046

Abstract

Read online

The constant increase of composite materials’ performances makes them more and more used in recent aircrafts. Structures, as the wings or the fuselage, may suffer from hail impacts that can make critical damages or even perforate them. In order to guaranty the safety of passengers, aircrafts have to be certified and simulations have to demonstrate good agreements with real behaviour of the structures and the hail projectile. The aim of this work is to propose a procedure to analyse the home made manufacturing of the ice generally performed in laboratories, its mechanical characterization and a mechanical model that can predict the time-space profile of the impact force on a rigid structure. Because of the high strain level of the hail during the impact, the Smooth Particle Hydrodynamics (SPH) method will be used. Indeed, the finite elements method needs heavy remeshing that are time consuming to avoid mesh distortion. The SPH is a numerical meshless method that calculates interactions between particles at every time increment. Models available in the literature have been studied and the model of J.D. Tippmann (Tippmann, Kim, et Jennifer D. Rhymer 2013) is chosen. In this paper, the Tippman model is presented with its solving using the SPH. A parametric study is proposed in order to catch the relevant parts of this model. A simple experimental procedure is then proposed to feed the model and the results of impact simulations at different velocities are compared to experimental measurements realized in the laboratory.