IEEE Access (Jan 2019)

UAV Image High Fidelity Compression Algorithm Based on Generative Adversarial Networks Under Complex Disaster Conditions

  • Qiuhong Hu,
  • Chunxue Wu,
  • Yan Wu,
  • Naixue Xiong

DOI
https://doi.org/10.1109/access.2019.2927809
Journal volume & issue
Vol. 7
pp. 91980 – 91991

Abstract

Read online

This paper proposes an improved image high fidelity compression algorithm based on the generative adversarial networks (GANs) to deal with the problem that the UAV image has a large amount of data which is not conducive to post-processing. By adding an encoder in front of the generator, the disaster area image transmitted by UAV is compressed to meet the requirements of the generator. After the compressed image is trained together with the real image through the discriminator, the quality of the compressed image is constantly improved. This image compression algorithm can fully synthesize the codes of non-major areas such as trees and rivers in the image, and try to retain the codes of important areas such as houses and roads. The experimental results show that the proposed compression method in this paper has a higher compression ratio than the traditional compression method for the disaster area image, and can obtain images with strong sense of hierarchy.

Keywords