Ecotoxicology and Environmental Safety (Jan 2024)

Degradation of norfloxacin by red mud-based prussian blue activating H2O2: A strategy for treating waste with waste

  • Shitong Liu,
  • Jun Wang,
  • Yang Liu,
  • Baojun Yang,
  • Maoxin Hong,
  • Shichao Yu,
  • Guanzhou Qiu

Journal volume & issue
Vol. 269
p. 115794

Abstract

Read online

The massive accumulation of red mud (RM) and the abuse of antibiotics pose a threat to environment safety and human health. In this study, we synthesized RM-based Prussian blue (RM-PB) by acid solution-coprecipitation method to activate H2O2 to degrade norfloxacin, which reached about 90% degradation efficiency at pH 5 within 60 min and maintained excellent catalytic performance over a wide pH range (3−11). Due to better dispersion and unique pore properties, RM-PB exposed more active sites, thus the RM-PB/H2O2 system produced more reactive oxygen species. As a result, the removal rate of norfloxacin by RM-PB/H2O2 system was 8.58 times and 2.62 times of that by RM/H2O2 system and PB/H2O2 system, respectively. The reactive oxygen species (ROS) produced in the degradation process included ·OH, ·O2- and 1O2, with 1O2 playing a dominant role. The formation and transformation of these ROS was accompanied by the Fe(III)/Fe(II) cycle, which was conducive for the sustained production of ROS. The RM-PB/H2O2 system maintained a higher degradation efficiency after five cycles, and the material exhibited strong stability, with a low iron leaching concentration. Further research showed the degradation process was less affected by Cl-, SO42-, NO3-, and humic acids, but was inhibited by HCO3- and HPO42-. In addition, we also proposed the possible degradation pathway of norfloxacin. This work is expected to improve the resource utilization rate of RM and achieve treating waste with waste.

Keywords