Genomic and molecular features distinguish young adult cancer from later-onset cancer
William Lee,
Zishan Wang,
Miriam Saffern,
Tomi Jun,
Kuan-lin Huang
Affiliations
William Lee
Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Zishan Wang
Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Miriam Saffern
Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Tomi Jun
Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
Kuan-lin Huang
Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corresponding author
Summary: Young adult cancer has increased in incidence worldwide, but its molecular etiologies remain unclear. We systematically characterize genomic profiles of young adult tumors with ages of onset ≤50 years and compare them to later-onset tumors using over 6,000 cases across 14 cancer types. While young adult tumors generally show lower mutation burdens and comparable copy-number variation rates compared to later-onset cases, they are enriched for multiple driver mutations and copy-number alterations in subtype-specific contexts. Characterization of tumor immune microenvironments reveals pan-cancer patterns of elevated TGF-β response/dendritic cells and lower IFN-γ response/macrophages relative to later-onset tumors, corresponding to age-related responses to immunotherapy in several cancer types. Finally, we identify prevalent clinically actionable events that disproportionally affect young adult or later-onset cases. The resulting catalog of age-related molecular drivers can guide precision diagnostics and treatments for young adult cancer.