PLoS ONE (Jan 2023)
Comparing reintroduction strategies for the endangered San Francisco gartersnake (Thamnophis sirtalis tetrataenia) using demographic models.
Abstract
For endangered species persisting in a few populations, reintroductions to unoccupied habitat are a popular conservation action to increase viability in the long term. Identifying the reintroduction strategy that is most likely to result in viable founder and donor populations is essential to optimally use resources available for conservation. The San Francisco gartersnake (Thamnophis sirtalis tetrataenia) is an endangered sub-species that persists in a small number of populations in a highly urbanized region of California. Most of the extant populations of San Francisco gartersnakes have low adult abundance and effective population size, heightening the need for establishment of more populations for insurance against the risk of extinction. We used simulations from demographic models to project the probability of quasi-extinction for reintroduced populations of San Francisco gartersnakes based on the release of neonate, juvenile, adult, or mixed-age propagules. Our simulation results indicated that the release of head-started juveniles resulted in the greatest viability of reintroduced populations, and that releases would need to continue for at least 15 years to ensure a low probability of quasi-extinction. Releasing captive-bred juvenile snakes would also have less effect on the viability of the donor population, compared to strategies that require more adult snakes to be removed from the donor population for translocation. Our models focus on snake demography, but the genetic makeup of donor, captive, and reintroduced populations will also be a major concern for any proposed reintroduction plan. This study demonstrates how modeling can be used to inform reintroduction strategies for highly imperiled species.