Fixed Point Theory and Applications (Jan 2010)

Moduli and Characteristics of Monotonicity in Some Banach Lattices

  • Miroslav Krbec,
  • Radosław Kaczmarek,
  • Henryk Hudzik,
  • Paweł Foralewski

DOI
https://doi.org/10.1155/2010/852346
Journal volume & issue
Vol. 2010

Abstract

Read online

First the characteristic of monotonicity of any Banach lattice X is expressed in terms of the left limit of the modulus of monotonicity of X at the point 1. It is also shown that for Köthe spaces the classical characteristic of monotonicity is the same as the characteristic of monotonicity corresponding to another modulus of monotonicity δ^m,E. The characteristic of monotonicity of Orlicz function spaces and Orlicz sequence spaces equipped with the Luxemburg norm are calculated. In the first case the characteristic is expressed in terms of the generating Orlicz function only, but in the sequence case the formula is not so direct. Three examples show why in the sequence case so direct formula is rather impossible. Some other auxiliary and complemented results are also presented. By the results of Betiuk-Pilarska and Prus (2008) which establish that Banach lattices X with ε0,m(X)<1 and weak orthogonality property have the weak fixed point property, our results are related to the fixed point theory (Kirk and Sims (2001)).