Lacticaseibacillus casei JS-2 from ‘Jiangshui’ Reduces Uric Acid and Modulates Gut Microbiota in Hyperuricemia
Jiahui Wu,
Xiang Wang,
Lvbu Aga,
Leimengyuan Tang,
Shuting Tan,
Dachuan Zhang,
Houxier Li,
Li Yang,
Nan Zhang,
Shiyao Su,
Maochun Xiao,
Rongting Min,
Aji Li,
Xueyong Wang
Affiliations
Jiahui Wu
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Xiang Wang
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Lvbu Aga
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Leimengyuan Tang
Bayingolin Mongolian Autonomous Prefecture Institute for Food and Drug Control, No. 101, North Jianguo Road, Korla City 841000, Bayingolin Mongol Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
Shuting Tan
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Dachuan Zhang
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Houxier Li
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Li Yang
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Nan Zhang
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Shiyao Su
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Maochun Xiao
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Rongting Min
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Aji Li
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Xueyong Wang
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
Lacticaseibacillus casei (JS-2) is a novel probiotic isolated from “Jiangshui”, a kind of traditional folk fermented food, which has a significant effect on hyperuricemia (HUA). In vitro experimental results showed that JS-2 has a high degradation ability and selectivity for uric acid (UA). The animal test results indicated that after two weeks of treatment, JS-2 could significantly reduce the level of UA in the serum of HUA quails (p < 0.01), and its effect is almost equivalent to that of the positive drug control group, benzbromarone. Further, after JS-2 treatment, the level of xanthine oxidase in quail serum decreased significantly. Analysis data of quail fecal metabolomics results showed that JS-2-altering metabolites were involved in amino acid, purine, and lipid metabolism. To investigate the mechanism underlying JS-2-mediated UA degradation in the quail model of HUA, 16S rRNA gene sequencing was conducted. It was found that the structure and function of the gut microbiota were restored after JS-2 intervention, and the abundance of short-chain fatty acid (SCFA)-producing bacteria (g__Ruminococcus_torques_group and g__Butyricicoccus) and bacteria with UA degradation capacity (g__unclassified_f__Lachnospiraceae and g__Negativibacillus) increased significantly; intestinal SCFAs, especially propionic acid, increased accordingly. These experimental data suggest that the beneficial effects of JS-2 may derive from changes in the gut microbiome, altering host–microbiota interactions, reducing UA levels by increasing UA excretion, and reducing absorption. These findings provided new evidence that JS-2 has the potential to be used as a naturally functional food for the prevention of HUA.