BMC Infectious Diseases (Oct 2008)

An A<sub>2A </sub>adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models

  • Linden Joel,
  • Obrig Tom,
  • Lee Grace H,
  • Martin Edward N,
  • Moore Christopher C,
  • Scheld W Michael

DOI
https://doi.org/10.1186/1471-2334-8-141
Journal volume & issue
Vol. 8, no. 1
p. 141

Abstract

Read online

Abstract Background The pathophysiology of sepsis is due in part to early systemic inflammation. Here we describe molecular and cellular responses, as well as survival, in A2A adenosine receptor (AR) agonist treated and untreated animals during experimental sepsis. Methods Sepsis was induced in mice by intraperitoneal inoculation of live bacteria (Escherichia coli or Staphylococcus aureus) or lipopolysaccharide (LPS). Mice inoculated with live bacteria were treated with an A2A AR agonist (ATL313) or phosphate buffered saline (PBS), with or without the addition of a dose of ceftriaxone. LPS inoculated mice were treated with ATL313 or PBS. Serum cytokines and chemokines were measured sequentially at 1, 2, 4, 8, and 24 hours after LPS was administered. In survival studies, mice were followed until death or for 7 days. Results There was a significant survival benefit in mice infected with live E. coli (100% vs. 20%, p = 0.013) or S. aureus (60% vs. 20%, p = 0.02) when treated with ATL313 in conjunction with an antibiotic versus antibiotic alone. ATL313 also improved survival from endotoxic shock when compared to PBS treatment (90% vs. 40%, p = 0.005). The serum concentrations of TNF-α, MIP-1α, MCP-1, IFN-γ, and IL-17 were decreased by ATL313 after LPS injection (p p p Conclusion Further studies are warranted to determine the clinical utility of ATL313 as a novel treatment for sepsis.