MethodsX (Jan 2021)

A miniaturized optoelectronic biosensor for real-time point-of-care total protein analysis

  • Ophir Vermesh,
  • Fariah Mahzabeen,
  • Jelena Levi,
  • Marilyn Tan,
  • Israt S. Alam,
  • Carmel T. Chan,
  • Sanjiv S. Gambhir,
  • James S. Harris

Journal volume & issue
Vol. 8
p. 101414

Abstract

Read online

A miniaturized optoelectronic sensor is demonstrated that measures total protein concentration in serum and urine with sensitivity and accuracy comparable to gold-standard methods. The sensor is comprised of a vertical cavity surface emitting laser (VCSEL), photodetector and other custom optical components and electronics that can be hybrid packaged into a portable, handheld form factor. In conjunction, a custom fluorescence assay has been developed based on the protein-induced fluorescence enhancement (PIFE) phenomenon, enabling real-time sensor response to changes in protein concentration. Methods are described for the following: • Standard curves: Used to determine the sensitivity, dynamic range, and linearity of the VCSEL biosensor/PIFE assay system in buffer as well as in human blood and urine samples. • Comparison of VCSEL biosensor performance with a benchtop fluorimetric microplate reader. • Accuracy of the VCSEL biosensor/PIFE assay system: Evaluated by comparing sensor measurements with gold-standard clinical laboratory measurements of total protein in serum and urine samples from patients with diabetes.

Keywords