Stem Cell Reports (Jan 2016)

High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells

  • Jared Carlson-Stevermer,
  • Madelyn Goedland,
  • Benjamin Steyer,
  • Arezoo Movaghar,
  • Meng Lou,
  • Lucille Kohlenberg,
  • Ryan Prestil,
  • Krishanu Saha

DOI
https://doi.org/10.1016/j.stemcr.2015.11.014
Journal volume & issue
Vol. 6, no. 1
pp. 109 – 120

Abstract

Read online

CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing.