Известия Томского политехнического университета: Инжиниринг георесурсов (Sep 2016)

Increase of dynamic stability stoke of autonomous energy system based on wind energy installtions under sudden load change

  • Sergey Nikolaevich Udalov,
  • Andrey Aleksandrovich Achitaev,
  • Alexander Georgievich Pristup,
  • Boris Mikhailovich Bochenkov

Journal volume & issue
Vol. 327, no. 8

Abstract

Read online

Nowadays, wind power engineering is developing in two equal directions. The first one is the increase of rated power for a single wind turbine by mass and dimensions parameters of a wind turbine with the use of high-voltage generators. The second direction is modernization of wind turbine elements and implementation of modern control systems for a whole wind turbine and for its elements to enhance power generation. These power sources are characterized by low inertia and small margin of dynamic stability under sharp power variations, for example, under short circuits. In recent years magnetic gears and variators investigations are widely used. These investigations are associated with high energy performance of magnetic gears and variators which can reduce the weight and size parameters and reduce the need for maintenance. Using magnetic variable-speed drives in wind turbines generator justified the possibility of regulating directly generator rotation speed. The paper is devoted to the use of magnetic continuously variable transmission to synchronize generators in power system under transient processes. A generator rotor rotational speed is regulated through magnetic variator laws and it is based on use of two subordinate regulation circuits. The main aim of the study is to increase dynamic stability stock of the local power supply system consisting of wind power generators operating in parallel. The methods: development of mathematical models of magnetic transmission using classical Park-Gorev transformations; using the laws of slave control when negotiating rotation speed in case of overload. The results. The authors have developed the mathematical model of local energy system consisting of parallel operating wind turbines with synchronous generators with permanent magnets. Synchronous operation of generators is supported by use of magnetic continuously variable transmission. The paper demonstrated the possibility to stabilize the generator rotation speed at overload.

Keywords