Mathematics (Jul 2021)

Pinned Geometric Configurations in Euclidean Space and Riemannian Manifolds

  • Alex Iosevich,
  • Krystal Taylor,
  • Ignacio Uriarte-Tuero

DOI
https://doi.org/10.3390/math9151802
Journal volume & issue
Vol. 9, no. 15
p. 1802

Abstract

Read online

Let M be a compact d-dimensional Riemannian manifold without a boundary. Given a compact set E⊂M, we study the set of distances from the set E to a fixed point x∈E. This set is Δρx(E)={ρ(x,y):y∈E}, where ρ is the Riemannian metric on M. We prove that if the Hausdorff dimension of E is greater than d+12, then there exist many x∈E such that the Lebesgue measure of Δρx(E) is positive. This result was previously established by Peres and Schlag in the Euclidean setting. We give a simple proof of the Peres–Schlag result and generalize it to a wide range of distance type functions. Moreover, we extend our result to the setting of chains studied in our previous work and obtain a pinned estimate in this context.

Keywords