Energies (May 2024)

Assessing the Impact of Organic Loading Rate on Hydrogen Consumption Rates during In Situ Biomethanation

  • Ali Dabestani-Rahmatabad,
  • Gabriel Capson-Tojo,
  • Eric Trably,
  • Jean-Philippe Delgenès,
  • Renaud Escudié

DOI
https://doi.org/10.3390/en17112490
Journal volume & issue
Vol. 17, no. 11
p. 2490

Abstract

Read online

Biogas upgrading via biomethanation has been extensively studied recently, but the influence of organic loading rate on process performance remains to be fully understood. This is particularly significant because both organic loading rate and hydrogen injection can lead to volatile fatty acid accumulation during anaerobic digestion. This study investigated the impact of a wide range of organic loading rates (from 1.25 to 3.25 g VS/L/d) on hydrogen consumption rates, organic acid accumulation, and microbial communities during in situ biomethanation. It also provided kinetics data and metabolite production data for different control reactors, including anaerobic digestion, ex situ biomethanation, and endogenous control reactors. Hydrogen was injected into parallel batch reactors using digestate from a semi-continuous lab-scale reactor subjected to increasing organic loading rates (1.25–3.25 g VS/L/d) as an inoculum. The inoculum was well adapted to each tested organic loading rate. The batch experiments were replicated following a 12 h hydrogen starvation period to assess the stability of hydrogen consumption rates. High organic loading rate values resulted in increased hydrogen consumption rates, peaking at 68 mg COD/L/h at an organic loading rate of 3.25 g VS/L/d (maximum value tested), with no significant organic acid accumulation despite the high hydrogen partial pressures. The hydrogen consumption rates were maintained after the starvation period. Furthermore, the addition of an organic substrate did not impact the hydrogen consumption rate (i.e., the in situ and ex situ rates were similar). A higher organic loading rate resulted in higher relative abundances of hydrogenotrophic methanogens (i.e., Methanospirillum sp.). This study highlights that increasing the organic loading rate can accelerate the rate of hydrogen consumption during in situ biomethanation, consequently reducing both capital and operational costs.

Keywords