Salinity restricts the growth of irrigated fruit crops in semi-arid areas, making it crucial to find ways to reduce salt stress. One effective strategy is using eliciting substances like ascorbic acid. In this context, the objective of this study was to evaluate the effects of application methods and concentrations of ascorbic acid on the morphophysiology and production of sour passion fruit irrigated with saline water. The experiment was organized using a factorial randomized block design (3 × 3 × 2) with three application methods (soaking, spraying, and soaking and spraying), three concentrations of ascorbic acid (0, 0.8, and 1.6 mM) and two levels of electrical conductivity of irrigation water—ECw (0.8 and 3.8 dS m−1). Foliar spraying of ascorbic acid at a concentration of 0.8 mM mitigated the effects of salt stress on the relative water content of leaves, the synthesis of photosynthetic pigments, gas exchange, and total production of sour passion fruit when irrigated with ECw of 3.8 dS m−1. Plants grown with water of 0.8 dS m−1 and under foliar application of 0.8 mM of ascorbic acid achieved the maximum growth in stem diameter and the greatest volume of pulp in the fruits.