Plants (May 2024)
Management of Secondary Metabolite Synthesis and Biomass in Basil (<i>Ocimum basilicum</i> L.) Microgreens Using Different Continuous-Spectrum LED Lights
Abstract
Different LED light spectra (LS) are absorbed by different plant photoreceptors and can control biomass and plant secondary metabolite synthesis. In this study, the effects of continuous-spectrum LED lights (red, blue, white, red + blue, and 12 h blue + 12 h red) on the production value, antioxidant compounds, and biomass of basil (Ocimum basilicum L.) microgreens (Red Rubin, Violeto, and Kapoor cultivars and the Ablagh genotype) were investigated. The results showed significant effects of LS on cultivar (Cv) and the interaction of LS and Cv on the studied traits. The highest quantitys of chlorophyll a, total chlorophyll, and nitrate were obtained in Violeto under blue lighting. Red lighting enhanced starch synthesis in Red Rubin and flavonoids in the Violeto Cv. The highest biomass (4.54 kg m−2) was observed in the Ablagh genotype and the highest carbohydrate synthesis in Violeto Cv in the red + blue treatment. The highest anthocyanin content (26.33 mg 100 g−1 FW) was observed for Red Rubin Cv under 12 h blue + 12 h red light. The greatest antioxidant capacity (83.57% inhibition), the highest levels of phenolic compounds (2027.25 mg GA 100 g−1 FW), vitamin C (405.76 mg 100 g−1 FW), proline, antioxidant potential composite index (APCI), and the greatest production values were obtained for the Ablagh genotype under blue lighting. Taken together, the experiment findings indicate that growing the Ablagh genotype under continuous blue lighting can increase the antioxidant capacity, phenolic compounds, and vitamin C and that this LED light spectrum can be used as a practical method to produce basil microgreens with high nutritional health value.
Keywords