Remote Sensing (Apr 2022)
Combining Spectral, Spatial-Contextual, and Structural Information in Multispectral UAV Data for Spruce Crown Delineation
Abstract
Precise delineation of individual tree crowns is critical for accurate forest biophysical parameter estimation, species classification, and ecosystem modelling. Multispectral optical remote sensors mounted on low-flying unmanned aerial vehicles (UAVs) can rapidly collect very-high-resolution (VHR) photogrammetric optical data that contain the spectral, spatial, and structural information of trees. State-of-the-art tree crown delineation approaches rely mostly on spectral information and underexploit the spatial-contextual and structural information in VHR photogrammetric multispectral data, resulting in crown delineation errors. Here, we propose the spectral, spatial-contextual, and structural information-based individual tree crown delineation (S3-ITD) method, which accurately delineates individual spruce crowns by minimizing the undesirable effects due to intracrown spectral variance and nonuniform illumination/shadowing in VHR multispectral data. We evaluate the performance of the S3-ITD crown delineation method over a white spruce forest in Quebec, Canada. The highest mean intersection over union (IoU) index of 0.83, and the lowest mean crown-area difference (CAD) of 0.14 m2, proves the superior crown delineation performance of the S3-ITD method over state-of-the-art methods. The reduction in error by 2.4 cm and 1.0 cm for the allometrically derived diameter at breast height (DBH) estimates compared with those from the WS-ITD and the BF-ITD approaches, respectively, demonstrates the effectiveness of the S3-ITD method to accurately estimate biophysical parameters.
Keywords