Energies (Nov 2021)

Evaluation on Coupling of Wall Boiling and Population Balance Models for Vertical Gas-Liquid Subcooled Boiling Flow of First Loop of Nuclear Power Plant

  • Guang Hu,
  • Yue Ma,
  • Qianfeng Liu

DOI
https://doi.org/10.3390/en14217357
Journal volume & issue
Vol. 14, no. 21
p. 7357

Abstract

Read online

An accurate prediction of the interphase behaviors of the vertical gas-liquid subcooled boiling flow is meaningful for the first loop of a nuclear power plant (NPP). Therefore, the interphase behaviors including the bubble size distribution in the first loop of the NPP are analyzed, evaluated, and validated using various wall boiling models coupled with the population balance model (PBM) kernels in this paper. Firstly, nondimensional numbers of the first loop of the NPP and DEBORA (Development of Borehole Seals for High-Level Radioactive Waste) experiment test cases are analyzed with approximation. Secondly, five active nucleation site density models Nn coupled with the PBM kernel combination, four kernel combinations (C1~C4) with the Nn models are calculated and analyzed. Lastly, various behaviors including the bubble size distribution Sauter mean diameter (SMD) dp, void fraction α, gas superficial velocity jg, and liquid superficial velocity jl are compared and validated with the experimental data of the DEBORA-1 (P = 2.62 MPa). The results indicate that the two Nn models are suitable for the calculations of thefirst loop of the nuclear power plant. For instance, for the bubble size distribution SMD dp, the specified Nn model with C1 (maximum relative error 9.63%) has relatively better behaviors for the first loop of the NPP. Especially, the combination C1 is applicable for the calculation of the bubble size distribution dp, void fraction α and liquid superficial velocity jl while C4 is suitable for the calculation of the gas superficial velocity jg. These results can provide guidance for the numerical computation of the subcooled boiling flow in the first loop of the NPP.

Keywords