PLoS ONE (Jan 2014)

Preliminary studies on membrane filtration for the production of potable water: a case of Tshaanda rural village in South Africa.

  • Gomotsegang F Molelekwa,
  • Murembiwa S Mukhola,
  • Bart Van der Bruggen,
  • Patricia Luis

DOI
https://doi.org/10.1371/journal.pone.0105057
Journal volume & issue
Vol. 9, no. 8
p. e105057

Abstract

Read online

Ultrafiltration (UF) systems have been used globally for treating water from resources including rivers, reservoirs, and lakes for the production of potable water in the past decade. UF membranes with a pore size of between 0.1 and 0.01 micrometres provide an effective barrier for bacteria, viruses, suspended particles, and colloids. The use of UF membrane technology in treating groundwater for the supply of potable water in the impoverished and rural village, Tshaanda (i.e., the study area) is demonstrated. The technical and administrative processes that are critical for the successful installation of the pilot plant were developed. Given the rural nature of Tshaanda, the cultural and traditional protocols were observed. Preliminary results of the water quality of untreated water and the permeate are presented. Escherichia coli in the untreated water during the dry season (i.e., June and July) was 2 cfu/100 ml and was 2419.2 cfu/100 ml) before UF. Following UF, it dramatically reduced to acceptable level (7 cfu/100 ml) which is within the WHO recommended level of <10 cfu/100 ml. Additionally, during the wet/rainy season E. coli and enterococci were unacceptably high (40.4 cfu/100 ml and 73.3 cfu/100 ml, respectively) before UF but were completely removed following UF, which are within the WHO and SANS recommended limit. The values for electrical conductivity (EC) and turbidity were constantly within the WHO recommended limits of 300 µS/cm corrected at 25°C and <5 NTU, respectively, before and after UF, during dry season and wet season. This suggests that there is no need for pre-treatment of the water for suspended particles and colloids. Considering these data, it can be concluded that the water is suitable for human consumption, following UF.