Журнал інженерних наук (Jun 2024)
Butane Dehydrogenation: Thermodynamic Modeling and Performance Analysis of Selected Process Simulators
Abstract
The critical role of process simulation in modern chemical engineering cannot be overstated, with its capacity to facilitate process scale-up, assess alternative designs, and comprehend plant efficiency. This research delves into the performance of three software programs, Cape-Open to Cape-Open (CC), DWSim, and Aspen HYSYS (AH), in modeling butane dehydrogenation. The focus is on their ability to accurately model thermodynamic properties and chemical reaction dynamics. Butane dehydrogenation was evaluated with specific thermodynamic parameters using a Gibbs reactor model with Gibbs minimization. The Soave Redlich-Kwong thermodynamic model was employed to investigate the impact of temperature of 700 °C and pressures of 0.1 MPa and 1.0 MPa on the yield and selectivity of butadiene and butene. The CC and AH simulation results closely agreed with the available experimental data. The consistency of freeware simulators with a commercial simulator was also assessed, with AH serving as the reference standard. It was revealed that CC demonstrates higher consistency with it than DWSim under both low- and high-pressure conditions. This study confirms that CC is a reliable process simulator suitable for use in resource-constrained settings where expensive commercial licenses are prohibitive.
Keywords