Macromol (Jul 2022)

Biodegradable Films from Kefiran-Based Cryogel Systems

  • Stylianos Exarhopoulos,
  • Athanasios Goulas,
  • Georgia Dimitreli

DOI
https://doi.org/10.3390/macromol2030021
Journal volume & issue
Vol. 2, no. 3
pp. 324 – 345

Abstract

Read online

Kefiran, which was isolated from kefir grains, was used for the fabrication of cryogel-films in the presence of plasticizers, such as glycerol and sorbitol. Varying concentration ratios of the exopolysaccharide/plasticizer system were employed in the process of the cryogel-film formulation and their effect on the physical (film thickness, moisture content, and solubility) and the mechanical (tensile strength and elongation at break) properties of the films was monitored. Kefiran-film vapor adsorption isotherms were calculated, and a thermal analysis of the samples was also performed. The structural characteristics of the cryogel-films were observed using confocal laser scanning microscopy. The cryo-treatment, alongside the plasticizer addition, affected the physical and mechanical properties of the kefiran films, as well as their morphology. Increasing kefiran concentration resulted in increasing the film thickness, the moisture content, and the tensile strength, while decreased their solubility and their elongation at break. Kefiran-film adsorption isotherms were affected by the cryo-treatment, the kefiran concentration, and the plasticizer use and concentration. The thermal analysis of the kefiran films showed thermal stability. The presence of the plasticizers and their increment concentration resulted in decreasing the glass transition and the melting temperatures. The cryo-treatment and the presence of plasticizers resulted in the films appearing smoother. Glycerol proved to affect more than the sorbitol–water vapor adsorption and the morphology of kefiran films.

Keywords